(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ack(Cons(x, xs), Nil) → ack(xs, Cons(Nil, Nil))
ack(Cons(x', xs'), Cons(x, xs)) → ack(xs', ack(Cons(x', xs'), xs))
ack(Nil, n) → Cons(Cons(Nil, Nil), n)
goal(m, n) → ack(m, n)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ack(Cons(x, xs), Nil) → ack(xs, Cons(Nil, Nil))
ack(Cons(x', xs'), Cons(x, xs)) → ack(xs', ack(Cons(x', xs'), xs))
ack(Nil, n) → Cons(Cons(Nil, Nil), n)
goal(m, n) → ack(m, n)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ack(Cons(xs), Nil) → ack(xs, Cons(Nil))
ack(Cons(xs'), Cons(xs)) → ack(xs', ack(Cons(xs'), xs))
ack(Nil, n) → Cons(n)
goal(m, n) → ack(m, n)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
ack(Cons(xs), Nil) → ack(xs, Cons(Nil))
ack(Cons(xs'), Cons(xs)) → ack(xs', ack(Cons(xs'), xs))
ack(Nil, n) → Cons(n)
goal(m, n) → ack(m, n)
Types:
ack :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ack
(8) Obligation:
Innermost TRS:
Rules:
ack(
Cons(
xs),
Nil) →
ack(
xs,
Cons(
Nil))
ack(
Cons(
xs'),
Cons(
xs)) →
ack(
xs',
ack(
Cons(
xs'),
xs))
ack(
Nil,
n) →
Cons(
n)
goal(
m,
n) →
ack(
m,
n)
Types:
ack :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
ack
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ack(
gen_Cons:Nil2_0(
1),
gen_Cons:Nil2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
ack(gen_Cons:Nil2_0(1), gen_Cons:Nil2_0(+(1, 0)))
Induction Step:
ack(gen_Cons:Nil2_0(1), gen_Cons:Nil2_0(+(1, +(n4_0, 1)))) →RΩ(1)
ack(gen_Cons:Nil2_0(0), ack(Cons(gen_Cons:Nil2_0(0)), gen_Cons:Nil2_0(+(1, n4_0)))) →IH
ack(gen_Cons:Nil2_0(0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
ack(
Cons(
xs),
Nil) →
ack(
xs,
Cons(
Nil))
ack(
Cons(
xs'),
Cons(
xs)) →
ack(
xs',
ack(
Cons(
xs'),
xs))
ack(
Nil,
n) →
Cons(
n)
goal(
m,
n) →
ack(
m,
n)
Types:
ack :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
ack(gen_Cons:Nil2_0(1), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_Cons:Nil2_0(1), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
ack(
Cons(
xs),
Nil) →
ack(
xs,
Cons(
Nil))
ack(
Cons(
xs'),
Cons(
xs)) →
ack(
xs',
ack(
Cons(
xs'),
xs))
ack(
Nil,
n) →
Cons(
n)
goal(
m,
n) →
ack(
m,
n)
Types:
ack :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
ack(gen_Cons:Nil2_0(1), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_Cons:Nil2_0(1), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)